Třeba takové pí - Ludolfovo číslo. Určitě víte, že to je číslo které nějako souvisí s kruhem. Jak ho zjistit? Jednou z metod, kterou si dobře pamatuju ze svého dětství, je ta, kdy s krejčovským metrem měříte obvod a průměr hrnců v kuchyni. Něco naměříte, dáte to do vzorečku a něco vám vypadne. Spousta práce a žádná legrace. To metoda Monte Carlo na to jde rafinovaně - vezmete čtverec papíru, narýsujete kružnici a potom vezmete krabičku párátek. Házíte jedno párátko za druhým a až vám žádné nezbyde, tak jen uděláte poměr těch párátek, které se vešly dovnitř kruhu. Po několika snadných matematických operacích by vám mělo vyjít Ludolfovo číslo.
Tuto metodu používám i já - ukrytou v programu, který mi počítá vlastnosti prachové obálky té mojí potvory (hvězdy). Prostě jen tak náhodně posílám jeden foton za druhým, počítám, co se s nima stane a co to udělá. Až mě to přestane bavit, tak s tím zkoncuju (ehm, počítač) a potom se podívám na výsledek. Nu, a dneska za mnou byl jeden kolega, který přišel s nápadem, že by se tato náhodná metoda dala uplatnit i pro docela pracné odhadování parametrů - se kterými se už mořím několikátý měsíc. Docela chytré, i když nestandardní.
Jinak dneska mi to v práci moc nešlo, objevil jsem jednu nesrovnalost a jsem zvědav, co to udělá s mým výsledkem. Tak mi držte palce, abych se zase neobjevil na úplném začátku...
Ale aby to nebylo jen o matematice - přikládám obrázek dalekohledu, se kterým jsem strávil poslední noc.
Žádné komentáře:
Okomentovat